Toggle Accessibility Tools


Full List of Publications



Chemical Biology of Plant Cell Wall Bioassembly and Biodegradation

  • Ding S.-Y.*, Zhao S., Zeng Y. Size, shape, and arrangement of native cellulose fibrils in maize plant cell walls, Cellulose. DOI 10.1007/s10570-013-0147-5.
  • Zeng Y., Zhao S., Yang S., Ding S.-Y.* 2014, Lignin plays a negative role in the biochemical process for lignocellulosic biofuels. Curr. Opin. Biotechnol. 27:38–45.
  • Ding S.-Y.*, Liu Y.-S., Zeng Y., Himmel M. E., Baker J. O., Bayer E. A. 2012, How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science 338: 1055-1060. Reviewed by Dixon R. A. 2013, Microbiology: Break down the walls. Nature, 493:36–37
  • Himmel M. E.*, Ding S.-Y., Johnson D. K., Adney W. S., Nimlos M. R., Brady J. W., and Foust T. D. 2007, Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804-807.
  • Ding S.-Y.*, and Himmel M.E. 2006, The maize primary cell wall microfibril: A new model derived from direct visualization. J. Agric. Food Chem. 54:597-606.

Carbohydrate-Active Enzymes and Enzyme Complexes

  • Liu Y.-S., John O. Baker J. O., Zeng Y., Himmel M. E., Hass T., Ding S.-Y.* 2011, Cellobiohydrolase Hydrolyzes Crystalline Cellulose on Hydrophobic Faces. J. Bio. Chem. 286:11195-11201.
  • Dagel D. J., Liu Y.-S., Zhong L., Luo Y., Himmel M. E., Xu Q., Zeng Y., Ding S.-Y.*, Smith S. J.* 2010, In situ Imaging of Single Carbohydrate-Binding Modules on Cellulose Microfibrils. J. Phys. Chem. B. 115:635-41.
  • Ding S.-Y., Rincon M.T., Lamed R., Martin J. C., McCrae S.I., Aurilia V., Shoham Y., Bayer E.A.*, and Flint H. J. 2001, Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens. J. Bacteriol. 183:1945-1953.
  • Ding S.-Y., Bayer E.A.*, Steriner D., Shoham Y. and Lamed R. 2000, An atypical scaffoldin of the Bacteroides cellulosolvens cellulosome that contains eleven type-II cohesins. J. Bacteriol. 182:4915-4925.
  • Ding S.-Y., Bayer E.A.*, Steriner D., Shoham Y. and Lamed R. 1999, A Novel Cellulosomal scaffoldin from Acetivibrio cellulolyticus that contains a family 9 Glycosyl Hydrolase. J. Bacteriol. 181:6720-6729.

Enabling Technologies

  • Dagel D.J., Liu Y.-S., Zhong L., Luo Y., Zeng Y., Himmel M., Ding S.-Y.*, and S. Smith S. J.* 2011, DOPI and PALM Imaging of Single Carbohydrate Binding Modules Bound to Cellulose Nanocrystals. SPIE Proc. Proc. SPIE 7905, 79050P. doi:10.1117/12.875285.
  • Saar B. G., Zeng Y., Freudiger C. W., Liu Y.-S., Himmel M. E., Xie X. S.*, and Ding S.-Y.* 2010, Label-free, real-time monitoring of biomass processing with stimulated Raman scattering microscopy. Angew. Chem. Int. Ed. 49:5476 – 5479.
  • Zeng Y., Saar B., Friedrich M. G., Chen F., Liu Y.-S., Dixon R. A., Himmel M. E., Xie, X. S., and Ding S.-Y.* 2010, Imaging lignin-down-regulated alfalfa using coherent anti-Stokes Raman scattering microscopy. BioEnergy Res. 3:272-277.
  • Ding S.–Y.*, Xu Q., Ali M.K., Baker J.O., Bayer E.A.*, Barak Y., Lamed R., Sugiyama J., Rumble G., and Himmel M.E. 2006, Versatile derivatives of carbohydrate-binding modules for imaging of complex carbohydrates approaching the molecular level of resolution. BioTechniques 41:435-443.
  • Ding S.-Y., Jones M., Tucker M.P., Nedeljkovic J.M., Wall J.S., Simon M.N., Rumble G.*, and Himmel M.E. 2003, Quantum dot molecules assembled with genetically engineered proteins. Nano Lett. 3:1581-1585.